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Abstract
When calculating molecular electronic energies, the contributions involving
the Coulomb operator for bielectronic terms are required rapidly and to high
chemically significant accuracy. The atomic orbital basis functions chosen
in the present work are Slater-type functions (STFs). These functions can
be expressed as finite linear combinations of B functions which are suitable
to apply the Fourier-transform method. The difficulties of the numerical
evaluation of the analytic expressions of the integrals of interest arise mainly
from the presence of two- or three-dimensional integral representations. In
this work, we present a generalized algorithm for a precise and fast numerical
evaluation of molecular integrals over STFs. Numerical results obtained with
C2H2, C2H4 and CH4 molecules show the efficiency of the approach presented
in this work. Comparisons with the existing codes are also listed.

PACS numbers: 02.70.Ns, 02.60.Jh, 31.15.Qg

1. Introduction

Previous work [1–5] on the accurate and fast numerical evaluation of multicentre one- and
two-electron integrals over Slater-type functions (STFs) [6, 7] continues with the present
contribution. Among the integrals required to develop electronic structure theory over STFs
are the four-centre two-electron Coulomb integrals (the most difficult type of integrals which
occur in molecular structure calculations). These integrals are given by
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SJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

−→
R ,

−→
R ′

[
χ

m1
n1,l1

(ζ1,
−→
R − −→

OA)
]∗[

χ
m3
n3,l3

(ζ3,
−→
R ′ − −→

OC)
]∗

× 1

|−→R −−→
R ′|

χ
m2
n2,l2

(ζ2,
−→
R − −→

OB)χ
m4
n4,l4

(ζ4,
−→
R ′ − −−→

OD) d
−→
R d

−→
R ′ (1)

where χm
n,l (ζ, �r) is a Slater function; n, l and m are the quantum numbers; A,B,C and D are

arbitrary points of the Euclidian space, while O stands for the origin of the fixed coordinate
system.

In the case where A = C, we obtain the expression of three-centre exchange integrals.
Two-centre exchange integrals correspond to the case where A = C and B = D. If A = B,
then we obtain the expression of three-centre two-electron Coulomb integrals denoted by
Kn2l2m2,n4l4m4

n1l1m1,n3l3m3
. Hybrid integrals, Hn2l2m2,n4l4m4

n1l1m1,n3l3m3
, are obtained in the case where A = B = C.

STFs constitute an important basis set for all calculations of physical properties of
molecules and solids, which use the linear combination of atomic orbitals (LCAO) approach
[8]. However, the systematic use of STFs has been prevented by the fact that their multicentre
integrals turned out to be extremely complicated. We note that many researchers hope that the
next generation of ab initio programs will be based on the usage of STFs [9–12]. Recently
[12], Handy and co-workers reported extensions to their Slater code for density functional
theory (DFT) to include exact exchange. They used a resolution of the identity approach to
simplify the integrals.

Various studies have focused on the use of B functions, proposed by Shavitt [13] and
introduced by Filter and Steinborn [14, 15]. These functions are analytically more complicated
than STFs but they have much more appealing properties applicable to multicentre integral
problems [15–19]. Note that the Fourier transform of a B function is of exceptional simplicity
[19, 20] and that STFs can be expressed as finite linear combinations of STFs [14, 16]. The
molecular integrals over STFs can be expressed as finite linear combinations of integrals over
B functions.

The B functions are well adapted to the Fourier-transform method [21–23], which led
to analytic expressions for molecular multicentre integrals. These analytic expressions
present severe numerical and computational difficulties due to the presence of two- or three-
dimensional integral representations, whose integrands are highly oscillatory functions because
of the presence of spherical Bessel functions.

It is well known that numerical integration of oscillatory integrands is difficult, especially
when the oscillatory part is a spherical Bessel function and not a simple trigonometric function
[24, 25].

Nonlinear-transformation methods for accelerating the convergence of oscillatory
integrals or infinite series have been studied for many years and applied to various situations
[26]. These methods are based on the idea of extrapolation. Their utility for enhancing
convergence has been amply demonstrated by Shanks [27]. With the help of nonlinear
transformations, the improvement of convergence can be remarkable. Note that different
techniques based on nonlinear transformations for improving convergence of highly oscillatory
integrals including Bessel function integrals and algorithms for their efficient computation are
presented in [28–32].

In the present work, we used the SD approach [1–3]. With the help of this method, the
semi-infinite integrals involving spherical Bessel functions are transformed into semi-infinite
integrals involving the sine function, and the nonlinear D transformation of Sidi [28, 29] is
applied with a second-order differential equation.

Recently, we developed an extremely efficient algorithm, based on the SD method, for
a fast numerical evaluation for three-centre nuclear attraction [4], three-centre two-electron
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Coulomb and hybrid integrals [5] over STFs. It is now shown that this algorithm can be
generalized to be applied to all multicentre two-electron Coulomb and exchange integrals,
which are the most difficult integrals occurring in any accurate molecular structure calculations
using the LCAO-MO approach. Recurrence relations are developed to further simplify the
calculation and to further reduce the calculation times for a high pre-determined accuracy.

The numerical results that we obtained for the integrals under consideration over
B functions are in complete agreement with those obtained by Grotendorst and Steinborn [23].
Values of the Coulomb integrals over STFs are obtained with C2H2, C2H4 and CH4 molecules.
We performed the same calculations using the code ADGGSTNGINT developed by Rico
et al [33] using STOnG (STFs expressed as a combination of n GTFs).

Numerical tables for the three-centre nuclear attraction integrals over B functions and over
STFs with linear and nonlinear systems can be found in [4] where we listed values obtained
with the Alchemy package [34] and with STOP (Slater-type orbital package) [35]. Numerical
tables for the three-centre two-electron Coulomb and hybrid integrals could be found in [5],
where comparisons with values obtained using STOP and ADGGSTNGINT are listed.

2. General definitions and properties

The Slater-type functions are defined in normalized form according to the following
relationship [6, 7]:

χm
n,l(ζ, �r) =

√
(2ζ )2n+1

(2n)!
rn−1 e−ζ rYm

l (θ�r , ϕ�r ) (2)

where n, l,m are the quantum numbers and Ym
l (θ, ϕ) stands for the surface spherical harmonic

and is defined explicitly using the Condon–Shortley phase convention as follows [36]:

Ym
l (θ, ϕ) = im+|m|

[
(2l + 1)(l − |m|)!

4π(l + |m|)!
] 1

2

P
|m|
l (cos θ) eimϕ (3)

P m
l (x) is the associated Legendre polynomial of lth degree and mth order.

STFs can be expressed as finite linear combinations of B functions [14]:

χm
n,l(ζ, �r) =

n−l∑
p=p̃

(−1)n−l−p22p+2l−n(l + p)!

(2p − n + l)!(n − l − p)!
Bm

p,l(ζ, �r) (4)

where

p̃ =


n − l

2
if n − l is even

n − l + 1

2
if n − l is odd.

(5)

The B functions are defined as follows [14, 15]:

Bm
n,l(ζ, �r) = (ζ r)l

2n+l (n + l)!
k̂n− 1

2
(ζ r)Ym

l (θ�r , ϕ�r ). (6)

The reduced Bessel function k̂n+ 1
2
(z) is defined by [13, 15]:

k̂n+ 1
2
(z) =

√
2

π
(z)n+ 1

2 Kn+ 1
2
(z) (7)

= zn e−z

n∑
j=0

(n + j)!

j !(n − j)!

1

(2z)j
(8)

where Kn+ 1
2

stands for the modified Bessel function of the second kind [37].
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The reduced Bessel functions satisfy the following relations [13, 37]:

k̂n+ 1
2
(z) = (2n − 1) k̂n− 1

2
(z) + z2 k̂(n−1)− 1

2
(z) (9)

(
d

z dz

)m k̂n+ 1
2
(z)

z2n+1
= (−1)m

k̂n+m+ 1
2
(z)

z2(n+m)+1
. (10)

The spherical Bessel function jl(x) is defined by [37]

jl(x) = (−1)lxl

(
d

x dx

)l ( sin(x)

x

)
. (11)

The spherical Bessel function satisfies the following recurrence relation [37]:

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x). (12)

For the following, we write jn

l+ 1
2

with n = 1, 2, . . . for the successive positive zeros of jl(x).

j 0
l+ 1

2
are assumed to be 0.

The Fourier-transform f̄ of a function f is given by

f̄ (�k) = (2π)−3/2
∫

�r
e−i�k·�rf (�r) d�r. (13)

The Fourier-transform Bm
n,l(ζ, �p) of Bm

n,l(ζ, �r) is given by [19, 20]

Bm
n,l(ζ, �p) =

√
2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Ym

l (θ �p, ϕ �p). (14)

The Fourier-integral representation of the Coulomb operator is given by [38]

1

|�r −−→
R 1|

= 1

2π2

∫
�k

e−i�k·(�r−−→
R 1)

k2
d�k. (15)

By using equation (4), one can express the four-centre two-electron Coulomb integrals
SJ ñ2l2m2,ñ4l4m4

ñ1l1m1,ñ3l3m3
over STFs (1) as finite linear combinations of integrals over B functions:

SJ ñ2l2m2,ñ4l4m4
ñ1l1m1,ñ3l3m3

=
ñ1−l1∑
n1=p̃1

(−1)ñ1−l1−n1 22n1+2l1−ñ1(l1 + n1)!

(2n1 − ñ1 + l1)!(ñ1 − l1 − n1)!

×
ñ2−l2∑
n2=p̃2

(−1)ñ2−l2−n2 22n2+2l2−ñ2(l2 + n2)!

(2n2 − ñ2 + l2)!(ñ2 − l2 − n2)!

×
ñ3−l3∑
n3=p̃3

(−1)ñ3−l3−n3 22n3+2l3−ñ3(l3 + n3)!

(2n3 − ñ3 + l3)!(ñ3 − l3 − n3)!

×
ñ4−l4∑
n4=p̃4

(−1)ñ4−l4−n4 22n4+2l4−ñ4(l4 + n4)!

(2n4 − ñ4 + l4)!(ñ4 − l4 − n4)!

× BJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

(16)

where p̃1, p̃2, p̃3 and p̃4 are given by equation (5) and BJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

is given by

BJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

−→
R ,

−→
R ′

[
B

m1
n1,l1

(ζ1,
−→
R − −→

OA)
]∗[

B
m3
n3,l3

(ζ3,
−→
R ′ − −→

OC)
]∗

× 1

|−→R −−→
R ′|

B
m2
n2,l2

(ζ2,
−→
R − −→

OB)B
m4
n4,l4

(ζ4,
−→
R ′ − −−→

OD) d
−→
R d

−→
R ′. (17)
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By substituting the integral representation of the Coulomb operator (15) in the above expression

after performing a translation of vector
−→
OA and

−−→
OD, we obtain

BJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
ei�x.

−→
R 41

x2

〈
B

m1
n1,l1

(ζ1, �r)∣∣ e−i�x.�r ∣∣Bm2
n2,l2

(ζ2, �r −−→
R 21)

〉
�r

× 〈
B

m4
n4,l4

(ζ4, �r ′)
∣∣ e−i�x.�r ′ ∣∣Bm3

n3,l3
(ζ3, �r ′ −−→

R 34)
〉∗
�r ′ d�x (18)

where
−→
R 1 = −→

OA,
−→
R 2 = −→

OB,
−→
R 3 = −→

OC,
−→
R 4 = −−→

OD, �r = −→
R − −→

R 1, −→r ′ = −→
R ′ − −→

R 4 and−→
R ij = −→

R i −−→
Rj .

In the case of three-centre two-electron exchange integrals,
−→
R 1 = −→

R 3 and in the case of
two-centre two-electron exchange integrals,

−→
R 1 = −→

R 3 and
−→
R 2 = −→

R 4.
The Fourier-transform method allowed analytic expressions to be developed for the terms〈

B
mi

ni ,li
(ζi, �r)∣∣ e−i�x.�r ∣∣Bmj

nj ,lj
(ζj , �r −−→

R )
〉
�r [22, 23]. This result led to analytic expressions for

two-electron multicentre integrals over B functions, which are given by [23]

BJ n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)5(2l1 + 1)!!(2l2 + 1)!!
(n1 + l1 + n2 + l2 + 1)!

(n1 + l1)!(n2 + l2)!

× (−1)l1+l2(2l3 + 1)!!(2l4 + 1)!!
(n3 + l3 + n4 + l4 + 1)!

(n3 + l3)!(n4 + l4)!
ζ

2n1+l1−1
1 ζ

2n2+l2−1
2

× ζ
2n3+l3−1
3 ζ

2n4+l4−1
4

l1∑
l′1=0

µ12∑
m′

1=µ11

il1+l′1
〈l1m1|l′1m′

1|l1 − l′1m1 − m′
1〉

(2l′1 + 1)!![2(l1 − l′1) + 1]!!

×
l2∑

l′2=0

µ22∑
m′

2=µ21

il2+l′2(−1)l
′
2
〈l2m2|l′2m′

2|l2 − l′2m2 − m′
2〉

(2l′2 + 1)!![2(l2 − l′2) + 1]!!

×
l3∑

l′3=0

µ32∑
m′

1=µ31

il3+l′3
〈l3m3|l′3m′

3|l3 − l′3m3 − m′
3〉

(2l′3 + 1)!![2(l3 − l′3) + 1]!!

×
l4∑

l′4=0

µ42∑
m′

4=µ41

il4+l′4(−1)l
′
4
〈l4m4|l′4m′

4|l4 − l′4m4 − m′
4〉

(2l′4 + 1)!![2(l4 − l′4) + 1]!!

×
l′1+l′2∑

l=l1,min,2

〈l′2m′
2|l′1m′

1|l m′
2 − m′

1〉Rl
21Y

m′
2−m′

1
l

(
θ−→

R21
, ϕ−→

R21

)

×
l1−l′1+l2−l′2∑
l12=l′1,min,2

〈l2 − l′2m2 − m′
2|l1 − l′1m1 − m′

1|l12m21〉

×
l′3+l′4∑

l′=l2,min,2

〈l′4m′
4|l′3m′

3|l′ m′
4 − m′

3〉Rl′
34Y

m′
4−m′

3
l′

(
θ−→

R34
, ϕ−→

R34

)

×
l3−l′3+l4−l′4∑
l34=l′2,min,2

〈l4 − l′4m4 − m′
4|l3 − l′3m3 − m′

3|l34m43〉

×
l12+l34∑

λ=l′′min,2

(−i)λ〈l12m21|l34m43|λµ〉
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×
�l12∑
j12=0

�l34∑
j34=0

(
�l12

j12

)(
�l34

j34

)
(−1)j12+j34

2ν1+ν2+l+l′+1
(
ν1 + 1

2 + l
)
!
(
ν2 + 1

2 + l′
)
!

×
∫ 1

s=0

sn2+l2+l1(1 − s)n1+l1+l2

sl′1(1 − s)l
′
2

∫ 1

t=0

tn4+l4+l3(1 − t)n3+l3+l4

t l
′
3(1 − t)l

′
4

Y
m2−µ
λ (θ�v, ϕ�v)

×
[∫ +∞

x=0
xnx

k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx

]
dt ds (19)

where 〈l1m1|l2m2|l3m3〉 stands for the Gaunt coefficients [42–44], and

µ = (m2 − m′
2) − (m1 − m′

1) + (m4 − m′
4) − (m3 − m′

3)

nγ12 = 2(n1 + l1 + n2 + l2) − (l′1 + l′2) − l + 1

nγ34 = 2(n3 + l3 + n4 + l4) − (l′3 + l′4) − l′ + 1

µ1i = max(−l′i , mi − li + l′i ) for i = 1, 2, 3, 4

µ2i = min(li , mi + li − l′i ) for i = 1, 2, 3, 4

[γ12(s, x)]2 = (1 − s)ζ 2
1 + sζ 2

2 + s(1 − s)x2

[γ34(t, x)]2 = (1 − t)ζ 2
3 + tζ 2

4 + t (1 − t)x2

nx = l1 − l′1 + l2 − l′2 + l3 − l′3 + l4 − l′4

ν1 = n1 + n2 + l1 + l2 − l − j12 +
1

2

ν2 = n3 + n4 + l3 + l4 − l′ − j34 +
1

2
�v = (1 − s)

−→
R 21 + (1 − t)

−→
R 43 −−→

R 41

�l12 = l′1 + l′2 − l

2
�l34 = l′3 + l′4 − l′

2
mij = mi − m′

i − (mj − m′
j ).

Let J̃ (s, t) be the semi-infinite integral which occurs in the above analytic expression. It is
given by

J̃ (s, t) =
∫ +∞

0
xnx

k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx. (20)

The numerical evaluation of the three-dimensional integral representation, which occurs in
equation (19), turned out to be extremely difficult when the values of s and t are close to
0 or 1. In these regions the asymptotic behaviour of the integrand of J̃ (s, t), which will be
referred to as Fs,t (x), cannot be represented by a function of the form e−αxg(x) where g(x)

is not a rapidly oscillating function. This is due to the fact that when s and t are close to
0 or 1, the arguments γ12(s, x) and γ34(t, x) of k̂ν1 and k̂ν2 become constants and therefore
the rapid oscillations of jλ(vx) cannot be damped by the exponential decreasing functions k̂ν1

and k̂ν2 . Note that when the value of v is very large, the zeros of Fs,t (x) become closer and
therefore the oscillations become strong (see figure 1) and then the numerical evaluation of
J̃ (s, t) become very difficult in particular for large values of λ.

We note that in the case when v → 0, the semi-infinite integral J̃ (s, t) (20) vanishes
if λ �= 0, since limα→0 jλ(α) = 0 and the integrand is an exponential decreasing function
(converges to 0 when x → +∞), and if λ = 0, we used the fact that j0(α) = sin(α)

α
→ 1 when

α → 0 and the fact that the integrand is an exponentially decreasing function, to obtain a good



Multicentre two-electron Coulomb and exchange integrals 3399

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  1  2  3  4  5

Figure 1. The integrand Fs,t (x) of J̃ (s, t) (20). s = 0.999, t = 0.005, ν12 = ν34 = 5/2, nγ12 =
nγ34 = 1, nx = λ = 1, ζ1 = ζ4 = 1.0, ζ2 = 1.5, ζ3 = 2.0, R12 = 2.0 and R34 = 1.0.

approximation of the semi-infinite integral which is given by

J̃ (s, t) ≈
∫ +∞

0
xnx

k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34
dx. (21)

For the evaluation of the above semi-infinite integral, we used the Gauss–Laguerre quadrature
of order 64. Note that the accuracy in the evaluation of the above semi-infinite integral can
be further improved by including higher terms of the power series expansion of j0(α) around
α = 0.

The semi-infinite integral J̃ (s, t) can be transformed into an infinite series of integrals as
follows:

J̃ (s, t) =
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

xnx
k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx (22)

where j 0
λ,v is assumed to be 0 and jn

λ,v =
jn

λ+ 1
2

v
for n = 1, 2, . . . are the successive positive

zeros of jλ(vx).
The above infinite series is convergent and alternating, therefore the sum of N first terms,

for N sufficiently large, gives a good approximation of the semi-infinite integral. Unfortunately,
the use of this approach requires a large amount of (CPU) time in particular for large values
of v as can be seen from table 1.

In previous work [39], we demonstrated that J̃ (s, t) is suitable to apply the nonlinear
D transformation [28, 29]. The integrand Fs,t (x) satisfies a sixth-order linear differential
equation with coefficients having asymptotic expansions in inverse powers of their argument
x as x → +∞. The approximation D(6)

n of J̃ (s, t) is obtained by solving a linear set of
equations of order (5n+ 1) where the computation of the fifth successive derivatives of Fs,t (x)

and the computation of the (5n + 1) successive positive zeros of spherical Bessel functions are
required for the calculations. This requires a considerable amount of (CPU) time especially
when the values of the quantum numbers are large.

With the help of previous work of Sidi [29, 30], a second-order linear differential equation
satisfied by the integrand Fs,t (x) was obtained. This differential equation is suitable to apply
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Table 1. Evaluation of J̃ (s, t) (20). s, t, ν12, nγ12 , ν34, nγ34 , nx, λ, ζ1, ζ2, ζ3, ζ4, R12 and R34 are
given in table 2. J̃ (s, t)(a) were obtained using the infinite series with spherical Bessel function
(22). J̃ (s, t)(b) were obtained using SD

(2,0)
n (31). Calculation times are in milliseconds.

mmax J̃ (s, t)(a) Error(a) Time n J̃ (s, t)(b) Error(b) Time

1424 0.444 524 8692(0) 0.33(−15) 22.81 7 0.444 524 8693(0) 0.77(−10) 0.15
2172 0.288 524 0417(−2) 0.11(−14) 38.45 7 0.288 524 0418(−2) 0.50(−12) 0.20
1252 0.845 400 1547(−2) 0.28(−15) 22.59 7 0.845 400 1548(−2) 0.14(−11) 0.20

912 0.352 713 8436(−2) 0.11(−14) 16.36 7 0.352 713 8437(−2) 0.55(−12) 0.17
2168 0.923 138 8415(−2) 0.11(−14) 39.92 7 0.923 138 8417(−2) 0.16(−11) 0.21
1084 0.433 358 1086(−2) 0.96(−15) 20.21 7 0.433 358 1086(−2) 0.68(−12) 0.19
1873 0.177 355 4024(−2) 0.33(−14) 37.66 7 0.177 355 4025(−2) 0.30(−12) 0.26
1543 0.128 293 3783(−2) 0.11(−13) 30.74 6 0.128 293 3783(−2) 0.25(−13) 0.20
2395 0.358 146 1352(−2) 0.26(−12) 49.35 7 0.358 146 1353(−2) 0.60(−12) 0.33
1845 0.981 745 6422(−3) 0.46(−13) 37.06 6 0.981 745 6422(−3) 0.18(−13) 0.26
1796 0.201 074 7195(−2) 0.12(−12) 37.98 7 0.201 074 7195(−2) 0.30(−12) 0.35
1439 0.242 745 1639(−2) 0.78(−13) 29.99 7 0.242 745 1639(−2) 0.34(−12) 0.29

942 0.186 622 9608(−2) 0.25(−12) 21.57 7 0.186 622 9608(−2) 0.69(−12) 0.47
1145 0.339 934 5708(−2) 0.31(−11) 25.41 7 0.339 934 5704(−2) 0.69(−12) 0.39
1630 0.250 394 2519(−2) 0.26(−10) 39.29 7 0.250 394 2546(−2) 0.40(−12) 0.49

840 0.172 215 3979(−2) 0.41(−11) 19.15 6 0.172 215 3984(−2) 0.98(−12) 0.36

the nonlinear D. This led to the approximation D(2)
n , which is obtained by solving a set

of linear equations of order (n + 1) and where it is not necessary to compute the successive
derivatives of the integrand, only the first derivative of the spherical Bessel function is required
for the calculations [40]. Great simplifications and a substantial gain in the calculation times
were realized using this approach. However, it is still necessary for the calculation of the
approximation D(2)

n to compute the successive zeros of the spherical Bessel functions and a
method to solve linear systems. This requires a considerable amount of (CPU) time, especially
when dealing with spherical Bessel functions with large order.

Now, we will state a theorem which is fully demonstrated in [1].
Let Ã(γ ) for some γ be the set of infinitely differentiable functions p(x), which have

asymptotic expansions in inverse powers of x as x → +∞, of the form

p(x) ∼ xγ
(
a0 +

a1

x
+

a2

x2
+ · · ·

)
(23)

such that a0 = limx→+∞ x−γ p(x) �= 0.
We define the functional α0(p) by α0(p) = a0 = limx→+∞ x−γ p(x).

Theorem 1 [1]. Let f (x) be a function of the form

f (x) = g(x)jλ(x)

where g(x) is in C2([0, +∞[), which is the set of functions that are twice continuously
differentiable on [0, +∞[, and of the form

g(x) = h(x) eφ(x)

and where h(x) ∈ Ã(γ ) and φ(x) ∈ Ã(k) for some γ and k.
If k > 0, α0(φ) < 0 and for all l = 0, . . . , λ − 1:

lim
x→0

xl−λ+1

(
d

x dx

)l

(xλ−1g(x))jλ−1−l (x) = 0
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then f (x) is integrable on [0, +∞[ (i.e.
∫ +∞

0 f (t) dt exists) and∫ +∞

0
f (x) dx =

∫ +∞

0

[(
d

x dx

)λ

(xλ−1g(x))

]
sin(x) dx. (24)

As can be seen from equation (24), the semi-infinite integral involving spherical Bessel
functions is transformed into a semi-infinite integral involving the simple sine function. It is
well known that the numerical integration of oscillatory integrands is very difficult when the
oscillatory part is a spherical Bessel function and not a simple trigonometric function [24, 25].

It is shown [2], that the integrand of the semi-infinite integral in the right-hand side of
equation (24) satisfies a second-order linear differential equation of the form required to apply
the nonlinear D transformation. The approximation of the semi-infinite integral was then
obtained by solving a linear set of equations of order (n + 1). Practical properties of the sine
function allowed, as demonstrated by Levin [41], the use of Cramer’s rule for calculating the
approximation of the semi-infinite integral under consideration. This approximation is given
by [2]

SD(2,j)
n =

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2

i+jG(xi+j )
]∑n+1

i=0

(
n+1
i

)
(1 + i + j)n

/[
x2

i+jG(xi+j )
] (25)

where xl = (l + 1)π for l = 0, 1, . . . , G(x) = (
d

x dx

)λ
(xλ−1g(x)) and where F(x) =∫ x

0 G(t) sin(t) dt .
It is shown that Fs,t (x) satisfies all the conditions of theorem 1 [2]. The semi-infinite

integral J̃ (s, t) can be re-written as

J̃ (s, t) = 1

vλ+1

∫ +∞

0
Gs,t (x) sin(vx) dx (26)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π/v

nπ/v

Gs,t (x) sin(vx) dx. (27)

where the function Gs,t (x) is given by

Gs,t (x) =
(

d

x dx

)λ
(

xnx+λ−1 k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

)
. (28)

As can be seen from figures 1 and 2, the oscillations of the integrand which occurs in the
integral (26), which will be referred to as F̃s,t (x), are slower than the oscillations of the
integrand Fs,t (x). From tables 2 and 1, it follows that the above infinite series converges faster
than the series involving the spherical Bessel function (22).

The approximation of the above semi-infinite integral can be obtained by using
equation (25). Unfortunately, the computation of the approximation SD

(2,j)
n using

equation (25) is not advantageous, because of the absence of the control of the degree of
accuracy. Note also that equation (25) cannot be computed recursively. In [4], we developed
a recurrence relation satisfied by both numerator A

(2,j)
n and denominator B

(2,j)
n of the term in

the right-hand side of equation (25).
The approximation SD

(2,j)
n , can be re-written as

SD(2,j)
n = 1

vλ+1

A
(2,j)
n

B
(2,j)
n

n, j = 0, 1, 2, . . . . (29)
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Figure 2. The integrand F̃s,t (x) of J̃ (s, t) given by equation (26). s = 0.999, t = 0.005, ν12 =
ν34 = 5/2, nγ12 = nγ34 = 1, nx = λ = 1, ζ1 = ζ4 = 1.0, ζ2 = 1.5, ζ3 = 2.0, R12 = 2.0 and
R34 = 1.0.

Let Un
i and V n

i be the ith term of the finite sum A
(2,j)
n and B

(2,j)
n , respectively. In [4], we

showed that
(
A

(2,j)
n

)
n

and
(
B

(2,j)
n

)
n

satisfy the following relations:
A

(2,j)

n+1 =
n+1∑
i=0

(n + 2)

(n + 2 − i)
(1 + i + j)Un

i + Un+1
n+2

B
(2,j)

n+1 =
n+1∑
i=0

(n + 2)

(n + 2 − i)
(1 + i + j)V n

i + V n+1
n+2 .

(30)

From the above equations, it follows that SD
(2,j)

n+1 can be re-written as [4]

SD
(2,j)

n+1 = 1

vλ+1

∑n+1
i=0

(n+2)

(n+2−i)
(1 + i + j)Un

i + Un+1
n+2∑n+1

i=0
(n+2)

(n+2−i)
(1 + i + j)V n

i + V n+1
n+2

. (31)

As we explained in [4, 5], the most important advantage of using the above equation is the
control of the degree of accuracy. In fact, we do not calculate the approximation SD

(2,j)

k+1 ,
unless the accuracy obtained using SD

(2,j)

k is not satisfactory. For this we use the following
test:

∣∣SD
(2,j)

k − SD
(2,j)

k−1

∣∣ = 1

vλ+1

∣∣∣∣∣A
(2,j)

k

B
(2,j)

k

− A
(2,j)

k−1

B
(2,j)

k−1

∣∣∣∣∣ � ε (32)

where ε is defined according to the pre-determined degree of accuracy. In table 3, we listed
values obtained for the semi-infinite integral J̃ (s, t) with ε varying from 10−8 to 10−16, to
show the efficiency of the above test.

The storage of the values of Uk
i and V k

i , k = 0, 1, 2, . . . and i = 0, 1, . . . , k + 1, led to a
substantial gain in the calculation times. The calculation of all values of x2

i+jG(xi+j ) for each

order of the SD is avoided.
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Table 2. Values with 15 correct decimals of J̃ (s, t) (20) obtained using the infinite series with the sine function (27). Calculation times are in milliseconds.

s t ν12 nγ12 ν34 nγ34 nx λ ζ 1 ζ 2 ζ 3 ζ 4 R12 R34 nmax J̃ (s, t)nmax Time

0.999 0.999 5/2 5 5/2 5 0 0 1.5 1.0 1.0 1.5 0.5 1.5 1424 0.444 524 869 234 410(0) 21.84
0.999 0.005 5/2 1 5/2 1 1 1 1.0 1.7 2.0 1.0 2.0 1.0 1818 0.288 524 041 734 135(−2) 37.98
0.999 0.005 5/2 3 5/2 3 1 1 1.0 1.2 1.2 1.0 2.0 1.0 1035 0.845 400 154 683 400(−2) 22.00
0.999 0.005 5/2 5 5/2 5 1 1 1.0 1.3 1.3 1.0 2.0 1.0 744 0.352 713 843 625 665(−2) 14.15
0.005 0.005 7/2 5 7/2 5 1 1 1.5 1.5 1.5 1.5 0.2 0.4 1484 0.923 138 841 518 954(−2) 32.25
0.005 0.005 7/2 7 7/2 7 1 1 1.4 5.0 5.0 1.4 0.2 0.2 764 0.433 358 108 553 502(−2) 14.94
0.005 0.999 9/2 5 9/2 5 2 2 1.9 6.5 1.9 6.5 0.5 2.5 1288 0.177 355 402 426 657(−2) 35.64
0.999 0.999 9/2 9 9/2 9 2 2 2.0 1.5 1.5 2.0 2.0 1.0 1047 0.128 293 378 253 670(−2) 25.40
0.999 0.999 9/2 7 9/2 7 3 3 6.0 1.4 1.4 5.0 2.0 1.0 1359 0.358 146 135 268 246(−2) 48.21
0.999 0.999 9/2 9 9/2 9 3 3 2.0 1.4 1.4 5.0 2.0 1.0 1043 0.981 745 642 221 362(−3) 32.04
0.999 0.005 11/2 10 11/2 10 3 3 8.0 1.7 3.5 1.5 0.5 1.0 946 0.201 074 719 471 237(−2) 34.43
0.999 0.005 11/2 11 11/2 11 3 3 8.0 1.4 8.0 1.6 0.5 1.0 794 0.242 745 163 858 075(−2) 25.06
0.005 0.005 13/2 11 13/2 11 4 4 2.0 5.0 2.5 1.7 1.0 2.0 533 0.186 622 960 871 429(−2) 26.60
0.005 0.005 13/2 13 13/2 13 4 4 1.6 2.5 2.5 1.6 0.7 1.0 571 0.339 934 570 445 075(−2) 23.36
0.005 0.005 17/2 11 17/2 11 4 4 2.7 2.0 9.0 2.7 1.0 2.0 935 0.250 394 254 557 966(−2) 48.56
0.005 0.005 17/2 17 17/2 17 4 4 2.0 6.0 3.0 2.0 1.0 1.0 489 0.172 215 398 336 898(−2) 20.74
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In [4, 5], we discussed the situation where G(xi+j ) → 0 or +∞. We demonstrated that
in this situation we can obtain a very good approximation of the semi-infinite integral under
consideration using the following formulae:

SD(2,j)
n ≈ 1

vλ+1

∑
i∈E

(
n+1
i

)
(1 + i + j)n

F(xi+j )

x2
i+j∑

i∈E

(
n+1
i

)
(1 + i + j)n 1

x2
i+j

(33)

where E is the subset of I = {0, 1, 2, . . . , n + 1} defined by

E = {
k ∈ I such that G(xk+j ) → 0 or + ∞}

.

Note that the relations given by equation (30) are still applicable to the approximation SD
(2,j)
n

given by equation (33). The following test was included in the algorithm:

R =
∣∣∣∣∣A

(2,j)
n

Ã
(2,j)
n

− B
(2,j)
n

B̃
(2,j)
n

∣∣∣∣∣ � tiny or R̃ =
∣∣∣∣∣ Ã

(2,j)
n

A
(2,j)
n

− B̃
(2,j)
n

B
(2,j)
n

∣∣∣∣∣ � tiny (34)

where Ã
(2,j)
n stands for the numerator and B̃

(2,j)
n for the denominator of the term in the right-

hand side of equation (33) and where tiny should be set close to but not identical with the
smallest floating point number that is representable on the computer. If the test is realized
then the subroutine returns the approximation SD

(2,j)
n using equation (33) with the recurrence

relations (30).
As can be seen from equation (25), the computation of the function Gs,t (x) is necessary

for the calculations. By using the Leibnitz formula, one can easily obtain(
d

x dx

)λ [
xnx+λ−1 k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

]
=

λ∑
l1=0

(
λ

l1

) λ−l1∑
l2=0

(
λ − l1

l2

) λ−l1−l2∑
l3=0

(
λ − l1 − l2

l3

)
(nx + λ − 1)!!

(nx + λ − 1 − 2l1)!!
xnx+λ−1−2l1

×
(

d

x dx

)λ−l1
[
k̂ν1 [R21γ12(s, x)]

[γ12(s, x)]nγ12

](
d

x dx

)λ−l1−l2
[
k̂ν2 [R34γ34(t, x)]

[γ34(t, x)]nγ34

]
. (35)

By using equation (10) and with the help of the Leibnitz formula and the fact that d
dx

= dz
dx

d
dz

,
one can easily show that if nγ = 2ν then for j ∈ N:(

d

x dx

)j [
k̂ν[Rγij (s, x)]

[γij (s, x)]2ν

]
= (−1)j sj (1 − s)j

k̂ν+j [Rγij (s, x)]

[γij (s, x)]2(ν+j)
(36)

and for nγij
< 2ν, we obtain

(
d

x dx

)j [
k̂ν[Rγij (s, x)]

[γij (s, x)]nγij

]

= sj (1 − s)j

[γij (s, x)]nγij
+2j

j∑
i=0

(
j

i

)
(2ν − nγ )!!

(2ν − nγ − 2i)!!
(−1)j−i k̂ν+j−i[Rγij (s, x)]. (37)
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From equations (35)–(37), it follows that the computation of the function Gs,t (x) (28) does
not present any difficulty.

3. Numerical discussion

The values of the semi-infinite integrals J̃ (s, t) (20) are obtained with 15 correct decimals
using the infinite series involving the sine function (27), which we sum until N = nmax

(see table 2). We also used the infinite series involving the spherical Bessel function (22) for
calculating the values of the semi-infinite integrals (see table 1). The parameter mmax in table 1,
stands for the number of terms of the infinite series that we sum.

From tables 2 and 1, we can note that the semi-infinite series with the sine function
converges faster than the infinite series with the spherical Bessel function.

For the evaluation of the finite integrals involved in equations (22), (27) and (31), we
separate two cases:

When v � 1, we used the Gauss–Legendre quadrature of order 20.
When 10−15 < v < 1, we divided the finite interval [xi−1, xi] into M subintervals, where

M = min(v−1, 100). The finite integral
∫ xi

xi−1
f (t) dt can be re-written as

∫ xi

xi−1
f (t) dt =∑M

k=1

∫ x̃k

x̃k−1
f (t) dt , where x̃0 = xi−1, x̃M = xi and for k = 1, 2, . . . , M − 1, x̃k =

xi−1 + k
xi−xi−1

M
.

For the evaluation of each finite integral involved in the above finite sum, we used the
Gauss–Legendre quadrature of order 20.

For the numerical evaluation of Gaunt coefficients which occur in the expression of the
four-centre two-electron Coulomb integrals over B functions (19), we used the subroutine
GAUNT.F developed by Weniger and Steinborn [43]. The spherical harmonics Ym

l (θ, ϕ) are
computed using the recurrence formulae in [43].

Table 2 contains values with 15 correct decimals of the semi-infinite integral (J̃ (s, t)nmax)

obtained using the infinite series with the simple sine function. These values are obtained for
s and t close to 0 or 1.

Table 1 contains values of J̃ (s, t) obtained using the infinite series with the spherical
Bessel function (J̃ (s, t)(a)) and values obtained using SD(2,0)

n with the recurrence relations
(J̃ (s, t)(b)). The value of ε was set to 10−10. The errors listed in these two tables are given by{

Error(a) = |J̃ (s, t)nmax − J̃ (s, t)(a)|
Error(b) = |J̃ (s, t)nmax − J̃ (s, t)(b)|.

The calculation times listed in tables 2 and 1 are in milliseconds.
Table 3 contains values obtained for J̃ (s, t) using SD(2,0)

n for different values of ε which
occur in the test given by (32).

Tables 4 and 5 contain values of Coulomb integrals over B functions (19). BJ n2l2m2,n4l4m4(a)
n1l1m1,n3l3m3

are obtained using the algorithm described in the present work. BJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

were obtained
by Grotendorst et al [23].

Tables 6–8 contain values of Coulomb integrals over STFs (1), obtained with the C2H2,
C2H4 and CH4 molecules. SJ n2l2m2,n4l4m4(a)

n1l1m1,n3l3m3
are obtained using the algorithm described in

the present work. SJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

are obtained with ADGGSTNGINT, using STOnG (STFs
expressed as a combination of n GTFs), developed by Rico et al [33].

The finite s and t integrals that occur in equation (19) are evaluated using Gauss–Legendre
quadrature of order 48. In the calculation of Coulomb integrals, the value of ε was set
to 10−15.
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Table 3. Values of J̃ (s, t) obtained using SD
(2,0)
n with recurrence relations. The test (32) was

performed to control the degree of accuracy. ν34 = ν12, nγ34 = nγ12 , ζ3 = ζ1 and ζ4 = ζ2.

ε s t ν12 nγ12 nx λ R12 R34 ζ 1 ζ 2 n Error

10−8 0.999 0.999 5/2 5 0 0 1.5 1.0 1.5 1.0 6 0.20(−08)
10−12 0.999 0.999 5/2 5 0 0 1.5 1.0 1.5 1.0 14 0.24(−13)
10−16 0.999 0.999 5/2 5 0 0 1.5 1.0 1.5 1.0 18 0.44(−15)

10−8 0.005 0.005 7/2 7 1 1 0.2 0.2 1.5 1.0 15 0.11(−09)
10−12 0.005 0.005 7/2 7 1 1 0.2 0.2 1.5 1.0 18 0.48(−13)
10−16 0.005 0.005 7/2 7 1 1 0.2 0.2 1.5 1.0 22 0.44(−15)

10−8 0.005 0.999 9/2 9 2 2 0.5 0.5 1.5 1.0 20 0.11(−08)
10−12 0.005 0.999 9/2 9 2 2 0.5 0.5 1.5 1.0 58 0.12(−12)
10−16 0.005 0.999 9/2 9 2 2 0.5 0.5 1.5 1.0 64 0.58(−15)

10−8 0.005 0.005 13/2 13 3 3 1.0 1.5 2.0 2.5 4 0.54(−09)
10−12 0.005 0.005 13/2 13 3 3 1.0 1.5 2.0 2.5 23 0.92(−13)
10−16 0.005 0.005 13/2 13 3 3 1.0 1.5 2.0 2.5 92 0.48(−15)

10−8 0.005 0.005 17/2 17 4 4 1.0 2.0 3.0 2.5 10 0.10(−08)
10−12 0.005 0.005 17/2 17 4 4 1.0 2.0 3.0 2.5 58 0.49(−12)
10−16 0.005 0.005 17/2 17 4 4 1.0 2.0 3.0 2.5 67 0.28(−15)

Table 4. Evaluation of BJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3

(19). ni = 1, li = mi = 0 and ζi = 1.0 for i = 1, 2,

3, 4. BJ n2l2m2,n4l4m4(a)
n1 l1m1,n3l3m3

obtained using the SD method. BJ n2 l2m2,n4l4m4(b)
n1l1m1,n3l3m3

were obtained by
Grotendorst et al [23].

−→
R 1

−→
R 2

−→
R 3

−→
R 4 BJ n2l2m2,n4l4m4(a)

n1l1m1,n3l3m3 BJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

(0, 0, 0) (0, 0, 0) (1.5, 0, 0) (1.5, 0, 0) 0.191 538 0727(−2) 0.191 538 0724(−2)
(0, 0, 0) (1, 0, 0) (1.5, 0, 0) (1.5, 0, 0) 0.182 915 8060(−2) 0.182 915 8056(−2)
(−5, 0, 0) (5, 0, 0) (0, 5, 0) (0, −5, 0) 0.419 964 3636(−8) 0.419 964 1217(−8)

Table 5. Evaluation of BJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3

(19). −→
R 1 = (1.0, 0, 0),

−→
R 2 = (0, 0, 1.0),

−→
R 3 = (0, 0, 0)

and −→
R 4 = (0, 0,−1.0). ζ1 = ζ3 = 1.2. BJ n2l2m2,n4l4m4(a)

n1l1m1,n3l3m3
obtained using the SD method.

BJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

were obtained by Grotendorst et al [23].

n1 l1 m1 n2 l2 m2 n3 l3 m3 n4 l4 m4 ζ 2 ζ 4 BJ n2l2m2,n4l4m4(a)
n1l1m1,n3l3m3 BJ n2l2m2,n4l4m4(b)

n1l1m1,n3l3m3

1 0 0 1 0 0 1 0 0 1 0 0 1.2 1.2 0.409 904 2951(−03) 0.409 903 0795(−03)
2 0 0 2 0 0 2 0 0 2 0 0 1.2 5.0 0.145 395 6058(−06) 0.145 396 7814(−06)
3 0 0 1 0 0 2 0 0 2 0 0 1.2 6.0 0.740 386 0779(−06) 0.740 384 7726(−06)
4 0 0 4 0 0 4 0 0 4 0 0 1.2 3.0 0.376 977 6274(−06) 0.376 976 9739(−06)
2 0 0 2 0 0 2 0 0 2 0 0 1.2 1.2 0.906 328 3306(−06) 0.906 318 0318(−06)
1 1 0 1 1 0 1 0 0 1 0 0 1.2 1.2 0.499 202 0456(−04) 0.499 200 6019(−04)
2 2 2 2 1 0 2 1 0 2 0 0 1.2 5.0 0.360 177 1334(−09) 0.360 181 1116(−09)
3 0 0 1 1 −1 2 2 −2 2 0 0 1.2 6.0 0.341 298 6063(−10) 0.341 297 8738(−10)
4 4 4 4 0 0 4 4 4 4 0 0 1.2 3.0 0.452 572 6037(−19) 0.452 591 3008(−19)
2 2 2 2 2 2 2 2 2 2 2 2 1.2 1.2 0.534 870 0825(−10) 0.534 869 3608(−10)
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Table 6. Four-centre two-electron Coulomb integrals over STFs SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3

(1). Values
obtained with C2H2. The calculation are obtained with the following geometry in Cartesian
coordinates: C1(0; 0; 1.1405), C2(0; 0;−1.1405), H1(0; 0; 3.1425) and H2(0; 0;−3.1425). ζC

1s =
5.700 and ζC

2pz
= ζC

2p+1
= 1.625. ζH

1s = 1.200 and ζH
2pz

= ζH
2p+1

= 2.220. SJ n2 l2m2,n4l4m4(a)
n1l1m1,n3l3m3

obtained using the SD method. SJ n2 l2m2,n4l4m4(b)
n1 l1m1,n3l3m3

obtained using ADGGSTNGINT code
developed by Rico et al [33].

SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3 SJ n2l2m2,n4l4m4(a)

n1l1m1,n3l3m3 SJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

〈1sC1 1sH1 |1sC2 1sH2 〉 0.195 966 315 243(−2) 0.195 966 312 886(−2)〈
1sC1 1sH1

∣∣∣1sC2 2pH2
z

〉
0.283 669 225 792(−2) 0.283 669 224 706(−2)〈

1sC1 2pH1
z

∣∣∣1sC2 2pH2
z

〉
−0.410 711 928 328(−2) −0.410 711 931 655(−2)〈

2pC1
z 1sH1

∣∣∣2pC2
z 1sH2

〉
−0.384 782 080 613(−1) −0.384 782 080 602(−1)〈

2pC1
z 2pH1

z

∣∣∣2pC2
z 2pH2

z

〉
0.178 337 206 024(−1) 0.178 337 206 021(−1)〈

2pC1
+1 1sH1

∣∣∣2pC2
+1 1sH2

〉
0.279 688 126 236(−2) 0.279 688 126 236(−2)

Table 7. Four-centre two-electron Coulomb integrals over STFs SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3

(1). Values
obtained with C2H4. The calculation are obtained with the following geometry in Cartesian
coordinates: C1(0; 0; 1.2755), C2(0; 0; −1.2755), H1(1.7528; 0; 2.2875), H2(1.7528; 0;
−2.2875), H3(−1.7528; 0; 2.2875) and H4(−1.7528; 0; −2.2875). ζC

1s = 5.700, ζC
2pz

= 1.625

and ζC
3dz

= 1.250. ζH
1s = 1.200 and ζH

2pz
= 2.220. SJ n2l2m2,n4l4m4(a)

n1 l1m1,n3l3m3
obtained using the SD

method. SJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

obtained using ADGGSTNGINT code developed by Rico et al [33].

SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3 SJ n2l2m2,n4l4m4(a)

n1 l1m1,n3l3m3 SJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

〈1sH1 1sH2 |1sH3 1sH4 〉 0.121 073 2512(−2) 0.121 073 2512(−2)

〈1sC1 1sC2 |1sH1 1sH2 〉 0.126 220 3273(−5) 0.126 220 0016(−5)

〈1sC1 1sH2 |1sC2 1sH3 〉 0.210 918 8680(−4) 0.210 876 1322(−4)〈
1sC1 2pC2

z

∣∣∣ 1sH1 1sH2

〉
0.230 206 4620(−2) 0.230 206 4005(−2)〈

2pC1
z 2pC2

z

∣∣∣ 1sH1 1sH2

〉
−0.102 656 8856(−1) −0.102 656 8856(−1)〈

2pC1
z 1sH2

∣∣∣ 2pC2
z 1sH3

〉
−0.749 068 3546(−2) −0.749 068 3544(−2)〈

3dC1
z 2pH2

z

∣∣∣ 3dC2
z 1sH3

〉
0.555 282 9776(−2) 0.555 282 9771(−2)〈

3dC1
z 2pH2

z

∣∣∣ 3dC2
z 2pH3

z

〉
−0.248 064 4501(−2) −0.248 064 4499(−2)

For the evaluation of the Coulomb integrals over STFs, we used equation (4) to express
these integrals as finite linear combinations of integrals over B functions, as can be seen from
equation (16). A single-zeta basis was used in all calculations performed in the present work.

All the computations were done in FORTRAN DOUBLE PRECISION. We used Lahey
ED compiler (15 significant decimals in DOUBLE PRECISION).

In all tables, the numbers in parentheses represent powers of 10. Calculations were
performed on a Workstation with an Intel Xeon Processor with 2.4 GHz.
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Table 8. Four-centre two-electron Coulomb integrals over STFs SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3

(1). Values
obtained with CH4. The calculation are obtained with the following geometry in Cartesian
coordinates: C(0; 0; 0), H1(1.0; 1.0; 1.0), H2(−1.0;−1.0; 1.0), H3(1.0;−1.0;−1.0) and
H4(−1.0; 1.0;−1.0). ζC

1s = 5.700, ζC
2pz

= 1.625 and ζC
3dz

= 1.250. ζH
1s = 1.200 and ζH

2pz
=

2.220. SJ n2l2m2,n4l4m4(a)
n1l1m1,n3l3m3

obtained using the SD method. SJ n2l2m2,n4l4m4(b)
n1 l1m1,n3l3m3

obtained using
ADGGSTNGINT code developed by Rico et al [33].

SJ n2l2m2,n4l4m4
n1 l1m1,n3l3m3 SJ n2l2m2,n4l4m4(a)

n1l1m1,n3l3m3 SJ n2l2m2,n4l4m4(b)
n1l1m1,n3l3m3

〈1sC1sH1 |1sH2 1sH3 〉 0.165 817 4001(−1) 0.165 817 3997(−1)〈
2pC

z 1sH1 |1sH2 1sH3
〉

0.357 202 3202(−1) 0.357 202 3202(−1)〈
2pC

z 2pH1
z

∣∣∣ 1sH2 1sH3

〉
0.197 447 0693(−1) 0.197 447 0693(−1)

〈1sH1 1sH2 |1sH3 1sH4 〉 0.307 539 6000(−1) 0.307 539 6000(−1)

〈2pH1
z 1sH2

∣∣∣ 1sH3 1sH4 〉 −0.451 723 6685(−2) −0.451 723 6685(−2)〈
2pH1

z 2pH2
z

∣∣∣ 1sH3 1sH4

〉
0.933 787 6689(−2) 0.933 787 6702(−2)〈

2pH1
z 2pH2

z

∣∣∣ 2pH3
z 1sH4

〉
0.134 523 0205(−2) 0.134 523 0222(−2)〈

2pH1
z 2pH2

z

∣∣∣ 2pH3
z 2pH4

z

〉
0.282 422 7596(−2) 0.282 422 7654(−2)

4. Conclusion

The basis set of B functions was used in order to apply the Fourier-transform method which
led to analytical expressions for all Coulomb integrals. The Coulomb integrals over STFs are
expressed as finite linear combinations of integrals over B functions.

The SD approach is used to improve the convergence of the semi-infinite highly oscillatory
integrals which occur in the analytic expressions that were obtained for the molecular integrals
under consideration. Recurrence relations are developed to further reduce the calculation time
keeping a high pre-determined accuracy. These recurrence relations allowed a better control
of the degree of accuracy and led to a very efficient and fast algorithm for all multicentre one-
and two-electron integrals over the preferable STFs. Obviously this greatly increased rapidity
of the SD method is a key issue. In the molecular context, many millions of such integrals are
required, therefore rapidity is the primordial criterion when the precision has been reached.

The numerical results obtained with the algorithm described in the present contribution
for all Coulomb and exchange integrals over B functions and over STFs show that it does
not seem impossible to envisage that STFs or related functions may compete with GTFs in
accurate and rapid molecular calculations in the near future. Note that the SD approach is
able to reach precisions of 10−16 atomic units reliably for the first time and certainly some
applications of this extremely high accuracy will be developed in future work.
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